
This is a repository copy of CME arrival time prediction using convolutional neural network.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/149545/

Version: Accepted Version

Article:

Wang, Y., Liu, J. orcid.org/0000-0003-2569-1840, Jiang, Y. et al. (1 more author) (2019)
CME arrival time prediction using convolutional neural network. The Astrophysical Journal,
881 (1). 15. ISSN 0004-637X

https://doi.org/10.3847/1538-4357/ab2b3e

© 2019. The American Astronomical Society. This is an author-produced version of a paper
subsequently published in The Astrophysical Journal. Uploaded in accordance with the
publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Draft version May 21, 2019

Typeset using LATEX twocolumn style in AASTeX62

CME Arrival Time Prediction Using Convolutional Neural Network

Yimin Wang,1, 2 Jiajia Liu,1 Ye Jiang,3 and Robert Erdélyi1, 4

1Solar Physics and Space Plasma Research Center (SP2RC), School of Mathematics and Statistics

The University of Sheffield, Sheffield S3 7RH, UK
2School of Electrical Engineering, University of Jinan, Jinan 250022, China

3Department of Computer Science, The University of Sheffield, Sheffield S1 4DP, UK
4Department of Astronomy, Eötvös Loránd University, Budapest, Pázmány P. sétány 1/A, H-1117, Hungary

ABSTRACT

Fast and accurate prediction of the arrival time of Coronal Mass Ejections (CMEs) at the Earth is

vital to minimize hazards caused by CMEs. In this paper, we use a deep learning framework, i.e. a

convolutional neural network (CNN) regression model, to analyze transit times from the Sun to the

Earth of 223 geo-effective CME events observed in the past 30 years. 90% of them were used to build
the prediction model, and the rest 10% have been used for test purpose. Unlike previous studies on

this topic, our proposed CNN regression model does not require manually selected features for model

training, does not need time spent on feature collection, and can deliver predictions without deeper

expert knowledge. The only input to our CNN regression model is the instances of the white-light

observations of CMEs. The mean absolute error of the constructed CNN regression model is about
12.4 hours, which is comparable to the average performance of the previous studies on this subject.

As more CME data are available, we expect the CNN regression model will reveal better results.

Keywords: Sun: coronal mass ejections (CMEs) — solar–terrestrial relations — Convolution Neural

Network

1. INTRODUCTION

Coronal Mass Ejections (CMEs) are ejects of mass

and magnetic flux from the Sun into the interplane-

tary space (Lin and Forbes 2000). Generally, it takes
CMEs one to five days to propagate from the Sun onto

the Earth, which enables the prediction of their arrival

times in advance become theoretically feasible. Once ar-

riving at Earth, CMEs could cause severe disturbances
to the terrestrial upper atmosphere, such as the magne-

tosphere, and lead to violent geomagnetic storms (e.g.,

Gosling et al. (1991); Webb et al. (2000); Wang et al.

(2002); Zhang et al. (2007); Chi et al. (2016)). These

magnetic storms could cause potentially serious dam-
ages to spacecrafts, modern communication systems,

high-voltage power grids and oil or gas pipelines. Thus,

fast, accurate and reliable prediction of CME arrival

time at Earth is highly demanded by a range of indus-
tries and other stakeholders, e.g. in security and defense

sectors.

Corresponding author: Jiajia Liu

jj.liu@sheffield.ac.uk

Zhao and Dryer (2014) reviewed the CME tran-

sit time prediction models including empirical mod-

els (Vandas et al. (1996); Brueckner et al. (1998);
Gopalswamy et al. (2000); Gopalswamy et al. (2001);

Wang et al. (2002); Zhang et al. (2003); Manoharan et al.

(2004); Kim et al. (2007); Michalek et al. (2008)), ex-

pansion speed model (Schwenn et al. 2005), drag-based
models (Vršnak (2001); Song (2010); Subramanian et al.

(2012); Vršnak et al. (2013)), physics-based models

(Moon et al. (2002); Feng et al. (2009); Qin et al.

(2009); Liu and Qin (2012)), and time-dependent MHD

models (Tóth et al. (2012); Riley et al. (2013)), and
claimed that no great gaps are found between their

prediction capabilities and accuracies. The predictions

yield in general about 10 hours of mean absolute error

(MAE) for a large number of events.
In the past few years, machine learning meth-

ods such as the Support Vector Machine (SVM)

(Cortes and Vapnik 1995), fully-connected neural net-

work (FCNN) (Hinton et al. 2006) and convolutional

neural network (CNN) (Lecun et al. 1998) have been
successfully applied to the analyses of several space

weather forecasting problems. Li and Zhu (2013) used

http://orcid.org/0000-0002-8835-3825
http://orcid.org/0000-0003-2569-1840
http://orcid.org/0000-0002-6683-0205
http://orcid.org/0000-0003-3439-4127
mailto: jj.liu@sheffield.ac.uk

2 Wang et al.

FCNN for solar flare forecasting. Bobra and Ilonidis

(2016) employed features derived from photospheric

vector magnetic field data and X-ray flux data as the

input to a SVM machine learning model to forecast
whether an active region that produces large solar flares

will also produce a CME, without considering CME

transit times. McGregor et al. (2017) applied CNN to

solar flare predictions. Yang et al. (2018) used FCNN to

predict solar wind speeds at 1 AU. Huang et al. (2018)
applied CNN to automatically extract forecasting pat-

terns from magnetograms of active regions to predict

C-, M- and X-class flares.

Despite applying machine learning techniques to solar
flare predictions, not much effort has been devoted to

applying machine learning to CME arrival/transit time

predictions. Sudar et al. (2016) used a FCNN to analyze

the CME transit time as a function of CME initial speed

and central meridian distance that resulted in the MAE
of about 11.6 hours. This 11.6-hour MAE is the average

over ten MAEs with each MAE calculated from a ran-

domly sampled testing dataset. Further, as the first step

of our series of efforts in making space weather predic-
tions, Liu et al. (2018) used 182 geo-effective (partial-

)halo CMEs and built an SVM model to predict the

CME arrival time, and obtained the MAE of 5.9 hours.

This 5.9 hours is the best MAE of 100,000 MAEs with

each MAE computed from a randomly sampled testing
dataset. The above models used manually selected pa-

rameters to form the input to the models, which: 1)

usually is quite time-consuming to obtain from original

observations, 2) could be biased because of the possi-
bility of missed important parameters, and 3) requires

specific CME-related expert knowledge for manual fea-

ture selection. It is also worth noting that, here in

this work, we will use k-fold cross validation approach

(Mosteller and Tukey 1968) to examine the model per-
formance, that obtains the average MAE of the predic-

tion around 12.4 hours, which is the most popular way to

be used in data mining. Compared with the validation

methods in Sudar et al. (2016) and Liu et al. (2018), the
k-fold cross validation can result in a less optimistic or

less biased estimate of the model performance, espe-

cially when there is a limited number of samples (Kohavi

(1995); Zhang and Yang (2015)). Further details about

the k-fold cross validation are given in Section 2.2
To this end, we use a CNN regression model to pre-

dict the CME transit times. Our main contributions are

that:

• This is the first time that the CNN method is ap-

plied to the problem of CME arrival time predic-

tion.

• The only input to train the model and deliver pre-

dictions are directly observed images.

• Our proposed model eases the laborious dealing of

manual features selection.

• The proposed model allows the lack of a deeper

specific expert knowledge to perform the predic-
tions.

• No matter what stage the evolution of a CME

event is observed by the LASCO C2 coronagraph,

once a new CME image is taken, its transit time to

the Earth can be predicted immediately, and the
prediction result can be obtained within a second.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce the data source used in this study,
and discuss the dataset prepared for the training and

validation of our model. In Section 3, we describe the

CNN algorithm, the configurations of our proposed CNN

regression model, and the details of the model train-

ing and validation. The validation results are then pre-
sented in Section 4, and the configurations of our model

are compared with a baseline model and the pretrained

Inception-ResNet-v2 model. Section 5 concludes the pa-

per.

2. DATA

2.1. Data source

We have employed an approach analogue to the one in

CAT-PUMA (Liu et al. 2018) in order to construct the

dataset to be used in this research. In this section, let
us now briefly recap the data extraction process for the

built-up of the database to be used here.

A catalogue of all observed geo-effective CMEs since

the beginning of the SOHO era, i.e. from 1996 to
early 2018 was established by combining the following

four CME databases: the Richardson and Cane list1

(Richardson and Cane 2010), the full halo CME list pro-

vided by the University of Science and Technology of

China2 (Shen et al. 2013), the George Mason Univer-
sity CME/ICME list3 (Hess and Zhang 2017), and the

CME Scoreboard by NASA4. After removing duplicates,

276 geo-effective events were obtained. Different from

Liu et al. (2018), where CMEs with angular width less
than 90◦ were removed, in this research, all CMEs with

no matter what their angular widths are now kept.

1 http://www.srl.caltech. edu/ACE/ASC/DATA/level3/icmetable2.htm
2 http://space.ustc.edu.cn/dreams/fhcmes/ index.php
3 http://solar.gmu.edu/heliophysics/index.php/GMU CME/ICME List
4 https://kauai.ccmc.gsfc.nasa.gov/CMEscoreboard/

CNN for CME Prediction 3

After obtaining a combined catalogue of geo-effective

CMEs observed in the past two decades, the SOHO

LASCO (Brueckner et al. 1995b) C2 white-light corona

observations, from 10 minutes before up to 2 hours
after the onset times of the events, were acquired.

The LASCO C2 coronagraph measures the white-light

corona from 1.5 to 5 solar radii, usually allowing the

detection of CMEs in their early stages before travel-

ling into the interplanetary space. For each CME event,
we used the “lasco readfits.pro” module of the SSWIDL

package to enquire the downloaded fits files. Next, from

each image file, the first downloaded image of the cor-

responding event was subtracted to generate a series of
“base-difference” images to be rescaled to a range of 0 to

255 with a data range of -1000 to 1000 DN. All images

were further manually checked and images with no or

poor CME observations were then removed.

After carrying out all the above procedures, one ob-
tains 1122 base-difference images of 223 geo-effective

CMEs detected in the period of 1997 to 2017.

2.2. Data preprocessing

In the dataset described above, the number of images

that are contained in one event ranges from one to ten.

All the images from an event are categorized into one iso-

lated folder, thus there are 223 folders. For each event,
the CME arrival time to the Earth is saved as a text

file. Each image file name is the time of its observation.

Therefore, the transit time of a CME can be calculated

by subtracting the arrival time by the time of observa-
tion of its corresponding image file name. In order to

alleviate the computational cost, the images, which are

originally 1024 × 1024 pix2, are re-scaled to a smaller

resolution: 256 × 256 pix2. The image pixels are then

scaled down by a factor of 255, i.e. they are transformed
from the range [0, 255] to [0, 1]. This normalization

step is to make the images contribute more evenly to

the total loss function of the model. The CME images,

although saved in a three-channel color mode, i.e. in
RGB format, are actually grayscale images. Therefore,

all the obtained images are then converted from RGB

to grayscale.

Next, a validation method is used to estimate the per-

formance of a model on unseen data. That is, we esti-
mate how the model performs when used to make pre-

dictions on a testing dataset that are not used during

the training of the model. There are various ways to

separate a dataset into training and testing sets. A com-
mon way is to simply divide the dataset into two groups

and assign a smaller portion, typically 20%, to the test-

ing set, and use the remaining data for the training set.

Another popular approach is the k-fold cross-validation

(Mosteller and Tukey 1968). The general procedure is

as follows: 1) shuffle the dataset randomly, 2) split the

dataset into k groups, 3) for each unique group, take it as

a hold out or a testing dataset, and take the remaining
groups as a training dataset, and 4) fit a model with the

training dataset and validate it with the testing dataset.

Therefore, the validation method of dividing the entire

dataset into two groups is simply an equivalent of one

fold of the k-fold cross validation. In Section 1, we have
already mentioned that k-fold cross validation can result

in a less optimistic or less biased estimate of the model

performance. This is because, with k-fold cross valida-

tion, each sample of the entire dataset is used in the
testing set, which avoids easily to be biased by lucky or

unlucky selection or cherry-picked testing set as in an-

other validation methods. Kohavi (1995) recommended

that the 10-fold cross validation is better at reducing

variance and bias, and is thus commonly used in ma-
chine learning. For applying the 10-fold cross validation

method in this work, we need to guarantee that images

belonging to the same event are given to one group only,

i.e. they must not be separated, otherwise there will
be correlated images between the training and testing

datasets. To this end, we shuffle all the 223 events ran-

domly, which are then splitted into ten groups with each

group containing approximately 22 events, i.e. 10% of

all the 1122 images.

3. CONVOLUTIONAL NEURAL NETWORK

The area of neural networks is inspired by the goal

of modelling the connectivity of neurons in the human

brain. These networks turn out to be well-suited to
model high level abstractions across a wide range of dis-

ciplines. Figure 1 shows the first standard CNN archi-

tecture, namely the LeNet-5 (Lecun et al. 1998).

3.1. Basic CNN components

A simple CNN is a sequence of layers, where each layer

transforms one volume of tensor or activation to another

through a differentiable function. Different layer types

used in a typical CNN primarily include:

• Convolutional Layer: The convolutional layer acts as
a filter for feature extraction from images. Figure 1

shows the first CNN, LeNet-5, that consists of sev-

eral feature maps, which are responses to the filters

in the presence of certain kinds of features with each

filter learning to look for different features from the
input. As we go deeper through the network, i.e. go

through more convolutional layers, we obtain feature

maps that represent more and more abstract features.

• Pooling Layer: The extracted feature maps are then

passed to the pooling layer, which sub-samples its in-

4 Wang et al.

Figure 1. The architecture of LeNet-5. Each plane is a feature map, and a neuron is a set of units whose weights are constrained
to be identical for a feature map (Lecun et al. 1998).

puts while preserving the most important information

in them. The pooling layer can reduce the dimensions

of the feature maps and increase robustness of the

feature extraction. Two typical pooling schemes are
average pooling (Wang et al. 2012) and max pooling

(Boureau et al. 2010).

• Fully-connected Layer (also called dense layer): The

fully-connected layer takes the high-level features

from the previous layer and translates them into pre-

dicted values in terms of regression problems. Since
each input sample can only be formatted onto one-

dimensional data for feeding into the fully-connected

layer, there is no spatial information preserved in this

layer.

Figure 2 depicts the information flow through a neu-

ron. The training dataset is given in pairs of (xi, yi).

CNN acquires an image (xi) through a small window,

e.g. 3 × 3 pix2, which is a 3 × 3 weights matrix

(W), called a filter or neuron or kernel. The weights
W = (w0, w1, w2, ...) are initialized as random numbers

and are the learnable parameters. During forward prop-

agation, a feature map or activation map, which is a

matrix, is formed by sliding the filter (W) over an im-
age (xi) for computing the dot product, adding the bias

(b), and applying the non-linearity or activation function

f :

y = f(Wx+ b). (1)

Here, x and y represent the input and output tensors,

respectively. The input tensor could be an input image

or a feature map from a previous layer. The activation
function, f , enables the neurons to represent a com-

plex non-linear dynamic system. Without the activation

function, the result of a neural network is just linear

combinations of input parameters. By a similar mecha-
nism, the dense layer computes the predicted value ŷi,

though its associated filter (W) is a one-dimensional vec-

tor for each feature instead of a two-dimensional win-

dow. The loss function L is the compatibility between

the predicted value ŷi and the label yi. The regulariza-

tion loss is just a function of the weights that is used to

control over-fitting. At this point, the gradient descent

optimization algorithm is used to minimize the loss via
updating the NN weights and bias through backprop-

agation based on the training dataset. This training

process continues iteratively until it converges.

Figure 2. The information flow of a neuron (Li 2018)

3.2. The configuration of our proposed CNN regression

model

The schematic diagram of our proposed CNN regres-
sion model is shown in Figure 3. Parameters of the CNN

can be learned automatically from the input data during

the training process. However, some hyperparameters

need to be set up before training (Bengio 2012). One
type of such hyperparameters is called the model hy-

perparameters, which specify the structure of the CNN

model. The other type, the so-called training hyperpa-

rameters, determine how the model is trained.

Observations show that, the expression ability of a NN
is enhanced as the size of it increases, which includes the

depth and width of the network. While as the size of a

NN increases, more training data is required to optimize

the parameters of the model, and the memory consump-
tion increases as well. Therefore, in our experiments,

we increase the model size until the performance of the

model does not improve anymore, or the computational

cost is too high to afford.

CNN for CME Prediction 5

Figure 3. The schematic diagram of our CNN regression model. We determined the configurations through trial and error and
tailored them to minimize the MSEs.

A number of experiments have been conducted for de-

termining the structure of the CNN regression model.
Several typical configurations of CNNs are introduced

for aiding to explain how the proposed structure is de-

veloped: 1) a convolutional layer is normally followed by

a batch normalization (BN), an activation function and
a max pooling; 2) the number of neurons in a layer is

in powers of 2, starting from 32; 3) the typical numbers

of window size are 3, 5, 7, 11. These typical config-

urations are used mainly for effectively finding a good

hyperparameter choice compared to try the sizes with
a unit increment each time. In the 10-fold cross vali-

dation, for each individual testing set, we evaluate the

performance of the model by calculating the MAE of

each CME image. For the testing set, with a total num-
ber of M images, the MAE is calculated as follows:

MAE =
1

M

M∑

m=1

|ym − ŷm|. (2)

Here, ym is the true target value, and ŷm is the predicted

target value. The subscript m represents the mth input

sample.

Convolutional layers are used to automatically extract

features from input data, of which the depth and width
directly affect the prediction accuracy. For determin-

ing the appropriate number of convolutional layers, five

main steps are taken. At each step, the depth and width

of dense layers are also experimented in a similar man-
ner. The five steps are shown as follows:

1. Models are composed of only one convolutional

layer, stacked by dense layers. The numbers of

neurons for the convolutional layer are 32 or 64.

Going beyond 64 neurons for the first layer costs

too much computational resources. All the models
from the first stage result in the MAEs 13.2-13.5

hours.

2. One more convolutional layer is added. Several

combinations of numbers of neuron for these two

convolutional layers are evaluated, e.g. 32 or 64
neurons for both convolutional layers, or 64 for

the first convolutional layer and 128 for the sec-

ond one. The MAEs of the two-convolutional-layer

model decreased to 13.0-13.2 hours, with an ex-

6 Wang et al.

ception when the window size is 11×11 pix2, the

MAE achieves 12.5 hours. It seems the 11×11 pix2

window size is more suitable for manipulating the

CME images.

3. There are three convolutional layers followed by

dense layers at this step. When the window size

is 11×11 pix2, the MAEs varied between 12.4-12.6

hours. The model structure that reaches the best
performance is shown in Figure 3. For other win-

dow sizes, the MAEs are between 12.5-12.8 hours.

A larger window size of 15×15 pix2 is also ex-

amined, and it produces the MAE of 12.8 hours,

which is not as good as the 11×11 pix2 one. These
experiments further confirm that 11×11 pix2 is

more suitable for the CME dataset.

4. When the number of convolutional layers increases
to four and five, the MAEs are always stuck at

12.7-13.1 hours, implying that noise may be intro-

duced due to insufficient training data for these

depths of the network.

5. After taking the best CNN model from step 3,

CNN structures with/without BN and max pool-

ing layers, and positions of BN before/after the

activation functions are then evaluated. Training

hyperparameters are also explored for the chosen
model, which includes batch size, activation func-

tion, and learning rate etc. Finally, the CNN re-

gression model is determined as shown in Figure

3

The activation function employed in our CNN re-
gression model is the rectified linear unit (ReLU)

(Nair and Hinton 2010), and a linear function is ap-

plied only to the last layer, which is able to output the

full range of values of the target variable. For a better

generalization, BN (Ioffe and Szegedy 2015) is applied
after the convolutional layers, which is a regularization

technique used to convert the distributions of all input

features to have zero mean and one standard deviation.

In this way, the later layer can treat all features equally,
and thus reduce the oscillations of the optimizer when

approaching the minimum point. The model is trained

to minimize the mean-squared error (MSE) loss func-

tion using Adam optimizer (Kingma and Ba 2014) with

a learning rate of 0.001. For the training set with a total
number of N images, MSE is calculated as follows:

MSE =
1

N

N∑

n=1

(yn − ŷn)
2, (3)

where yn is the true target value, and ŷn is the pre-

dicted target value. The subscript n represents the nth

input sample. MSE is commonly used in solving regres-

sion problems because it can deliver better result than

other loss functions tested while developing our CNN

regression model. In the training process, each of the
10-fold is trained 500 epochs and the model weights of

each fold is determined from the epoch that generates

the minimal MSE. The model error is then obtained by

averaging the 10-fold MSEs. We determined the con-

figurations through trial and error and tailored them to
minimize the MSEs. The batch size used in the training

process is 64.

The number of trainable parameters of a two-

dimensional convolutional layer (Conv2D) is calculated
by the filter height times the filter width times num-

ber of feature maps (or channels) from the previous

layer as the number of weights of one filter, plus one

bias for this filter, and then times the number of filters

for all filters. For example, assuming that the input
image has 256 pixels in height, 256 pixels in width

and 1 channel since it has been converted to grayscale.

The Conv2D in the first layer of our CNN regression

model has 64 filters with each filter 11 × 11 weights.
The number of trainable parameters of this Conv2D is

(11 × 11 × 1 + 1) × 64 = 7808. A BN computes two

trainable parameters and two non-trainable parameters

per feature map on the previous layer, which makes the

BN in the first layer having 4 × 64 = 256 parameters
with 128 trainable and 128 non-trainable parameters,

respectively. ReLU and max pooling do not have any

parameters. Therefore, in total, the first layer contains

7808 + 256 = 8064 parameters. The number of train-
able parameters of a dense layer is computed by the

number of input plus one bias, and then times the num-

ber of neurons. For example, the first dense layer in

our model has 256 neurons, and its number of input is

32 × 32 × 256 = 262, 144, which makes its number of
trainable parameters (262, 144+1)× 256 = 67, 109, 120.

The code is available at https://github.com/

yiminking/CME-CNN. The implementation of our

CNN regressionmodel is built using Keras (Chollet et al.
2015), which is a high-level API of TensorFlow (Abadi et al.

2015). TensorFlow is an open source software library

developed by Google Brain team 5, and it is one of

the most popular infrastructure for running machine

learning algorithms.

4. EXPERIMENTAL RESULT AND ANALYSIS

A deep learning approach is proposed for CME

arrival time prediction, which is able to automat-
ically extract predicting features from the white-

5 https://ai.google/research/teams/brain

https://github.com/yiminking/CME-CNN
https://github.com/yiminking/CME-CNN

CNN for CME Prediction 7

light observations of CMEs. The average MAE over

ten testing sets is 12.4 hours varying between 10.1 hours

and 16.2 hours.

During the training process, weights in the convolu-
tional layers are iteratively adjusted to minimize the er-

ror between the predicted and the true arrival time of a

CME. Taking the first convolutional layer in the CNN

model for example, we aim to understand how the model

comprehends the CME images, and how different model
structures affect the prediction accuracy. The weights

of 64 neurons are initialized by random numbers at the

start of the training process as shown in Figure 4(a),

and the averaged MAE of the 10-fold cross validation is
65.8 hours ranging from 55.2 to 80.5 hours before the

training. In Figure 4(b), the weights are adjusted to the

patterns after the model is trained for 500 epochs, which

look at a CME image from different aspects.

In order to understand how the model structures af-
fect the prediction accuracy, the feature maps from four

different models are compared as shown in Figure 5.

The training hyperparameters and dense layer scheme

are kept the same for these four models. Figure 5(a)
is the original input CME image. This image contains

at least 4 different features: the black disk as the Sun,

the white structure as the CME, the black structure

between the CME and the Sun as the CME when it ap-

peared in the LASCO C2 FOV for the first time, and
the vast black background with noises. Figure 5(b) is

generated by a model with only one convolutional layer

with 32 neurons and window size 3×3 pix2. This model

produced the worst performance across all of our ex-
periments, of which the averaged 10-fold MAE is 13.5

hours. This could be expected as we can see from Fig-

ure 5(b) that, not a single filter successfully distinguish

between the above four features. The Sun, the CME

and the background were almost mixed together with
similar brightness in all filters. Figure 5(c) is generated

by a two-convolutional-layer model with an improved

MAE of around 13.0 hours. Filters in this model start

to look at the desired locations, but with only one filter
(at the second row and second column) makes the CME

brighter enough than the solar disk and the background.

Figure 5(d) is from a three-convolutional-layer model

with halved number of neurons compared with the pro-

posed model and the window size 3×3 pix2. Com-
pared to the two-convolutional-layer model, more filters

in this three-convolutional-layer model successfully dis-

tinguish the desired features. Figure 5(e) is generated

by the proposed CNN regression model, which shows
clear concentration on the CME. Interestingly, for fil-

ters that successfully distinguish between the CME and

the background, the contrasts between the CME and

the background are higher in the proposed model than

in the three-convolutional-layer model. Meanwhile, the

background is also less noisy. These findings mean that

proposed model performs better in separating the CME
from the background and ignoring the background noise.

Figure 6 depicts the distribution of CME transit times

against their corresponding MAEs for all the testing

data. The bins are ten-hour wide. We can see that

the more the image samples fall in a transit time range,
the smaller the MAE, i.e. the more accurate its pre-

diction. When the transit times are in the range of 60

to 70 hours, there are the most numbers of images, i.e.

215, and its MAE is just 7.3 hours. It needs to be noted
that, 1122 images are considered to be a small dataset

for deep learning methods. Due to their intrinsic prop-

erties, deep learning approaches can learn the features

of training data better when there is a sufficient amount

of them. If more training data are available, the CNN
regression model would yield much better results.

Figure 7 depicts the distribution of the MAEs for all

the testing samples. The bins are four-hour wide. The

figure shows that 60% of the images are contained in the
first three bins, i.e. of which the predicted transit times

are smaller than 12 hours.

In the ideal case, the correlation coefficients between

the predicted and the actual transit times should be

equal to 1, i.e. as marked by the blue dashed line in
Figure 8. The black dots demonstrate the transit times

from all the testing samples. Despite several outliers,

the agreement with the mean correlation coefficient (cor-

rcoef) over the ten folds of 0.58 ranging between 0.35 to
0.83 looks satisfactory for the majority of the dots.

Out of the studied 223 events, the arrival times of

59 events have been predicted by various earlier mod-

els available via the NASA CME Scoreboard. Figure 9

shows a comparison of the prediction error between our
model and these alternative models on these 59 events.

The prediction error of our model on an event is the

MAE of predictions made on all images used for one

event, and the prediction error of the earlier models is
the MAE of all available predictions at the NASA CME

Scoreboard on the same event. It turns out that, in 38

(∼64.4%) events, our model gives a smaller prediction

error than that of the average of the traditional models.

For all these 59 events, the average prediction error of
our model is about 12.6 hours, while the average pre-

diction error of the studied traditional models is about

15.4 hours.

In our experiments, we also compared the proposed
CNN regression model with an FCNN and the state-

of-the-arts Inception-ResNet-v2 (Szegedy et al. 2016)

models as shown in Figure 10. We trained and validated

8 Wang et al.

(a) Random initialization of weights (b) Trained weights after 500 epochs

Figure 4. Variation of the weights of the first convolutional layer before and after training.

Figure 5. Feature maps of the first convolutional layer of four model architectures.

the CME dataset using an FCNN model with eight

layers as a baseline. The pretrained Inception-ResNet-

v2 model was trained using the well-known ImageNet

dataset 6, meaning a reasonable number of features be-

ing extracted from the ImageNet dataset that are then

6 http://www.image-net.org/

CNN for CME Prediction 9

Figure 6. The distribution of CME transit times and their
corresponding MAEs for all the testing samples.

Figure 7. The distribution of MAEs for all the testing sam-
ples.

Methods MAE corrcoef TP

FCNN 26.03 -0.01 279,625,729

Inception-ResNet-v2 13.10 0.55 56,440,673

CNN regression 12.42 0.58 72,074,652

Table 1. Comparison of the proposed CNN regression model
with other commonly used approaches. MAE - Mean Abso-
lute Error, corrcoef - correlation coefficient, TP - number of
Trainable Parameters.

saved in the kernels of the Inception-ResNet-v2 model.

In order to use the Inception-ResNet-v2 model in regres-

sion tasks, we removed its top fully-connect layer which

is used for classification problems, and attached another
four fully-connected layers tailored for regression tasks.

Figure 8. Observed and predicted transit times of each
image in the testing set. The blue dashed line depicts the
case when the predicted transit hours equal the real ones,
and the red dashed lines show the deviation from the blue
line.

0 10 20 30 40 50 60
Average Prediction Error by Other Models (hrs)

0

10

20

30

40

50

60

Pr
ed

ict
io
n
Er
ro
r b

y
Ou

r M
od

el
 (h

rs
)

64.4%

35.6%

Figure 9. The prediction error calculated by our CNN re-
gression model versus the average of the traditional methods.
The blue dashed line indicates when the prediction error from
our model is the same with that of the average of the tradi-
tional models.

The comparison of the results is demonstrated in Ta-

ble 1. The FCNN model has a testing MAE of 26.0

hours varying between 20.0-34.4 hours, and its correla-

tion coefficient is only -0.01. This much worse result

10 Wang et al.

Figure 10. The structure of the FCNN model (left) and the Inception-ResNet-v2 regression model (right). We determined the
configurations of these two models through trial and error and tailored them to minimize the MSEs.

of FCNN compared with the CNN regression model is

expected, because FCNN is not capable of extracting

features from images. We have already mentioned in

Section 3.1 that any dimension of input data has to

be flattened to one-dimension before feeding to a fully-
connected layer, therefore, no spatial information can

be preserved. FCNN has trainable parameters about

4 times of the CNN regression model. The ImageNet

dataset is composed of 1000 classes that are commonly
seen in human life, e.g. animals and electronics, but it

does not contain images similar to that of the CMEs.

Therefore, even though the Inception-ResNet-v2 model

has been pretrained, it does not defeat the CNN regres-

sion model.

5. CONCLUSION

In this work, we have applied a CNN regression
model to predict CME transit times using 1122 CME

images observed by the SOHO LASCO C2 corograph

(Brueckner et al. 1995a) from 223 events as the input

data. The output is their corresponding transit times

estimated to be needed to propagate from the Sun to

the Earth. The MAE over the entire sample is about

12.4 hours, which is very similar to that of the average

performance of previous studies on the same subject.

Due to the intrinsic properties of CNNs, more training
samples can result in much better results, whereas 1122

images are considered to be a small size of dataset for

the method of deep learning.

The most important benefit of our proposed CNN
model is that it is not necessary to select features man-

ually, which is usually rather time consuming, requires

specific expertise, and can lead to failure of tasks if in-

appropriate features are selected. Secondly, feature data

collection, which is a redundant work and normally costs
tens of hours of running time, is not necessary in our

work. On the contrary, the only input to our CNN re-

gression model is the instances of the white-light obser-

vations of CMEs. Another benefit is, similar to FCNNs,
that in our model it is not necessary to specify the empir-

ical function or hyper-surface of mapping between input

and output data.

CNN for CME Prediction 11

The employed CNN regression model, as demon-

strated in this work, only predicts the transit time

for a CME that can finally arrive at the Earth, and

it does not predict whether a CME will actually hit
the Earth or not. The latter is another very important

research task in space weather prediction. Therefore,

the first follow-up step of our future work, would be to

predict whether a CME can indeed arrive at the Earth

using a much wider range of CME dataset, i.e. using
all the CME events listed in the SOHO LASCO CME

Catalog (Gopalswamy et al. 2009). Next, one needs to

be reminded that, although CNN models are good at

extracting features from images, they are not capable of
dealing with time sequence data, i.e. CNN models treat

images as isolated individuals without considering inter-

relationships of the images. As the second step of our

future work, we will therefore apply the deep learning

approaches that can take evolutionary properties of the

CMEs image sequences into account, which may further

improve the accuracy of CME arrival predictions.

ACKNOWLEDGEMENT

The SOHO LASCO CME catalog is generated and

maintained at the CDAW Data Center by NASA and
The Catholic University of America in cooperation with

the Naval Research Laboratory. SOHO is a project

of international cooperation between ESA and NASA.

YW thanks for the warm hospitality and support re-

ceived as an MSRC Visiting Research Fellow while car-
rying out this research at the Solar Physics and Space

Plasma Research Centre (SP2RC), School of Mathemat-

ics and Statistics (SoMaS), The University of Sheffield.

JL and RE are grateful to STFC (UK), grant number
ST/M000826/1, and The Royal Society for their sup-

port. We also acknowledge the use of a Titan Xp GPU

kindly donated by the NVIDIA Corporation.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,

M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,

Levenberg, J., Mané, D., Monga, R., Moore, S., Murray,

D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,

Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,

Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,

Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.

(2015). TensorFlow: Large-scale machine learning on

heterogeneous systems. Software available from

tensorflow.org.

Bengio, Y. (2012). Practical recommendations for

gradient-based training of deep architectures. CoRR,

abs/1206.5533.

Bobra, M. G. and Ilonidis, S. (2016). Predicting coronal

mass ejections using machine learning methods. The

Astrophysical Journal, 821(2):127.

Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010). A

theoretical analysis of feature pooling in visual

recognition. In Proceedings of the 27th International

Conference on International Conference on Machine

Learning, ICML’10, pages 111–118, USA. Omnipress.

Brueckner, G. E., Delaboudiniere, J.-P., Howard, R. A.,

Paswaters, S. E., St. Cyr, O. C., Schwenn, R., Lamy, P.,

Simnett, G. M., Thompson, B., and Wang, D. (1998).

Geomagnetic storms caused by coronal mass ejections

(CMEs): March 1996 through June 1997.

Geophys. Res. Lett., 25:3019–3022.

Brueckner, G. E., Howard, R. A., Koomen, M. J.,

Korendyke, C. M., Michels, D. J., Moses, J. D., Socker,

D. G., Dere, K. P., Lamy, P. L., Llebaria, A., Bout,

M. V., Schwenn, R., Simnett, G. M., Bedford, D. K., and

Eyles, C. J. (1995a). The large angle spectroscopic

coronagraph (lasco). Solar Physics, 162(1):357–402.

Brueckner, G. E., Howard, R. A., Koomen, M. J.,

Korendyke, C. M., Michels, D. J., Moses, J. D., Socker,

D. G., Dere, K. P., Lamy, P. L., Llebaria, A., Bout,

M. V., Schwenn, R., Simnett, G. M., Bedford, D. K., and

Eyles, C. J. (1995b). The Large Angle Spectroscopic

Coronagraph (LASCO). Sol. Phys., 162(1-2):357–402.

Chi, Y., Shen, C., Wang, Y., Xu, M., Ye, P., and Wang, S.

(2016). Statistical Study of the Interplanetary Coronal

Mass Ejections from 1995 to 2015. SoPh, 291:2419–2439.

Chollet, F. et al. (2015). Keras. https://github.com/

fchollet/keras.

Cortes, C. and Vapnik, V. (1995). Support-vector

networks. Machine Learning, 20(3):273–297.

Feng, X. S., Zhang, Y., Sun, W., Dryer, M., Fry, C. D., and

Deehr, C. S. (2009). A practical database method for

predicting arrivals of “average” interplanetary shocks at

earth. Journal of Geophysical Research: Space Physics,

114(A1).

Gopalswamy, N., Lara, A., Lepping, R. P., Kaiser, M. L.,

Berdichevsky, D., and St. Cyr, O. C. (2000).

Interplanetary acceleration of coronal mass ejections.

Geophys. Res. Lett., 27:145–148.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

12 Wang et al.

Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M. L., and

Howard, R. A. (2001). Predicting the 1-au arrival times

of coronal mass ejections. Journal of Geophysical

Research: Space Physics, 106(A12):29207–29217.

Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G.,

Vourlidas, A., Freeland, S., and Howard, R. (2009). The

SOHO/LASCO CME Catalog. Earth Moon and Planets,

104:295–313.

Gosling, J. T., McComas, D. J., Phillips, J. L., and Bame,

S. J. (1991). Geomagnetic activity associated with earth

passage of interplanetary shock disturbances and coronal

mass ejections. Journal of Geophysical Research: Space

Physics, 96(A5):7831–7839.

Hess, P. and Zhang, J. (2017). A Study of the

Earth-Affecting CMEs of Solar Cycle 24. SoPh, 292:80.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast

learning algorithm for deep belief nets. Neural Comput.,

18(7):1527–1554.

Huang, X., Wang, H., Xu, L., Liu, J., Li, R., and Dai, X.

(2018). Deep learning based solar flare forecasting

model. i. results for line-of-sight magnetograms. The

Astrophysical Journal, 856(1):7.

Ioffe, S. and Szegedy, C. (2015). Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. CoRR, abs/1502.03167.

Kim, K.-H., Moon, Y.-J., and Cho, K.-S. (2007).

Prediction of the 1-au arrival times of cme-associated

interplanetary shocks: Evaluation of an empirical

interplanetary shock propagation model. Journal of

Geophysical Research: Space Physics, 112(A5).

Kingma, D. P. and Ba, J. (2014). Adam: A method for

stochastic optimization. CoRR, abs/1412.6980.

Kohavi, R. (1995). A study of cross-validation and

bootstrap for accuracy estimation and model selection.

In Proceedings of the 14th International Joint Conference

on Artificial Intelligence - Volume 2, IJCAI’95, pages

1137–1143, San Francisco, CA, USA. Morgan Kaufmann

Publishers Inc.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324.

Li, F. (2018). Optimization: Stochastic gradient descent.

https://cs231n.github.io/optimization-1/#opt3.

Li, R. and Zhu, J. (2013). Solar flare forecasting based on

sequential sunspot data. Research in Astronomy and

Astrophysics, 13(9):1118.

Lin, J. and Forbes, T. G. (2000). Effects of reconnection on

the coronal mass ejection process. Journal of

Geophysical Research, 105(A2):2375–2392.

Liu, H.-L. and Qin, G. (2012). Using soft x-ray

observations to help the prediction of flare related

interplanetary shocks arrival times at the earth. Journal

of Geophysical Research: Space Physics, 117.

Liu, J., Ye, Y., Shen, C., Wang, Y., and Erdélyi, R. (2018).

A new tool for cme arrival time prediction using machine

learning algorithms: Cat-puma. The Astrophysical

Journal, 855(2):109–118.

Manoharan, P. K., Gopalswamy, N., Yashiro, S., Lara, A.,

Michalek, G., and Howard, R. A. (2004). Influence of

coronal mass ejection interaction on propagation of

interplanetary shocks. Journal of Geophysical Research

(Space Physics), 109:A06109.

McGregor, S., Dhuri, D., Berea, A., and Munoz-Jaramillo,

A. (2017). FlareNet: A Deep Learning Framework for

Solar Phenomena Prediction. In NIPS Workshop on

Deep Learning for Physical Sciences, Long Beach.

Michalek, G., Gopalswamy, N., and Yashiro, S. (2008).

Space weather application using projected velocity

asymmetry of halo cmes. Solar Physics, 248(1):113–123.

Moon, Y.-J., Dryer, M., Smith, Z., Park, Y. D., and Cho,

K. S. (2002). A revised shock time of arrival (stoa)

model for interplanetary shock propagation: Stoa-2.

Geophysical Research Letters, 29(10):28–1–28–4.

Mosteller, F. and Tukey, J. W. (1968). Data analysis,

including statistics. In Lindzey, G. and Aronson, E.,

editors, Handbook of Social Psychology, Vol. 2.

Addison-Wesley.

Nair, V. and Hinton, G. E. (2010). Rectified linear units

improve restricted boltzmann machines. In Proceedings

of the 27th International Conference on International

Conference on Machine Learning, ICML’10, pages

807–814, USA. Omnipress.

Qin, G., Zhang, M., and Rassoul, H. K. (2009). Prediction

of the shock arrival time with SEP observations. Journal

of Geophysical Research (Space Physics), 114:A09104.

Richardson, I. G. and Cane, H. V. (2010). Near-Earth

Interplanetary Coronal Mass Ejections During Solar

Cycle 23 (1996 – 2009): Catalog and Summary of

Properties. Sol. Phys., 264(1):189–237.

Riley, P., Linker, J. A., and Mikić, Z. (2013). On the

application of ensemble modeling techniques to improve

ambient solar wind models. Journal of Geophysical

Research: Space Physics, 118(2):600–607.

Schwenn, R., Dal Lago, A., Huttunen, E., and Gonzalez,

W. D. (2005). The association of coronal mass ejections

with their effects near the earth. Annales Geophysicae,

23(3):1033–1059.

https://cs231n.github.io/optimization-1/#opt3

CNN for CME Prediction 13

Shen, C., Liao, C., Wang, Y., Ye, P., and Wang, S. (2013).

Source Region of the Decameter-Hectometric Type II

Radio Burst: Shock-Streamer Interaction Region. SoPh,

282:543–552.

Song, W. B. (2010). An analytical model to predict the

arrival time of interplanetary cmes. Solar Physics,

261(2):311–320.

Subramanian, P., Lara, A., and Borgazzi, A. (2012). Can

solar wind viscous drag account for coronal mass ejection

deceleration? Geophysical Research Letters, 39(19).

Sudar, D., Vršnak, B., and Dumbović, M. (2016).

Predicting coronal mass ejections transit times to earth

with neural network. Monthly Notices of the Royal

Astronomical Society, 456(2):1542–1548.

Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016).

Inception-v4, inception-resnet and the impact of residual

connections on learning. CoRR, abs/1602.07261.

Tóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw,

D. L., Gombosi, T. I., Fang, F., Manchester, W. B.,

Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer,

A., Ma, Y.-J., and Opher, M. (2012). Adaptive

numerical algorithms in space weather modeling.

Journal of Computational Physics, 231:870–903.

Vandas, M., Fischer, S., Dryer, M., Smith, Z., and Detman,

T. (1996). Parametric study of loop-like magnetic cloud

propagation. Journal of Geophysical Research: Space

Physics, 101(A7):15645–15652.

Vršnak, B. (2001). Deceleration of coronal mass ejections.

Solar Physics, 202(1):173–189.

Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T.,

Möstl, C., Veronig, A., Čalogović, J., Dumbović, M.,

Lulić, S., Moon, Y.-J., and Shanmugaraju, A. (2013).

Propagation of Interplanetary Coronal Mass Ejections:

The Drag-Based Model. SoPh, 285:295–315.

Wang, T., Wu, D. J., Coates, A., and Ng, A. Y. (2012).

End-to-end text recognition with convolutional neural

networks. In Proceedings of the 21st International

Conference on Pattern Recognition (ICPR2012), pages

3304–3308.

Wang, Y. M., Ye, P. Z., Wang, S., Zhou, G. P., and Wang,

J. X. (2002). A statistical study on the geoeffectiveness

of Earth-directed coronal mass ejections from March

1997 to December 2000. Journal of Geophysical Research

(Space Physics), 107:1340.

Webb, D. F., Cliver, E. W., Crooker, N. U., Cry, O. C. S.,

and Thompson, B. J. (2000). Relationship of halo

coronal mass ejections, magnetic clouds, and magnetic

storms. J. Geophys. Res., 105:7491–7508.

Yang, Y., Shen, F., Yang, Z., and Feng, X. (2018).

Prediction of solar wind speed at 1 au using an artificial

neural network. Space Weather, 16.

Zhang, J., Dere, K. P., Howard, R. A., and Bothmer, V.

(2003). Identification of solar sources of major

geomagnetic storms between 1996 and 2000. The

Astrophysical Journal, 582(1):520.

Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N.,

Huttunen, E., Kasper, J. C., Nitta, N. V., Poomvises,

W., Thompson, B. J., Wu, C.-C., Yashiro, S., and

Zhukov, A. N. (2007). Solar and interplanetary sources

of major geomagnetic storms (dst ≤ -100 nt) during

1996–2005. Journal of Geophysical Research: Space

Physics, 112(A10).

Zhang, Y. and Yang, Y. (2015). Cross-validation for

selecting a model selection procedure. Journal of

Econometrics, 187(1):95 – 112.

Zhao, X. and Dryer, M. (2014). Current status of

cme/shock arrival time prediction. Space Weather,

12(7):448–469.

