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Kim et al.1 proposed an artificial intelligence (AI) model to predict 
the photospheric magnetograms of the Sun using extreme ultravio-
let (EUV) observations as the only inputs, and concluded that their 
model is “reliable if the farside active regions conform to Hale’s law, 
as long as the slight overestimation of their total flux and a possible 
slight difference in their tilt angle are considered”. In this Matters 
Arising, we present a detailed sensitivity study of the AI algorithm 
used by Kim et al.1. Despite identifying issues in the data prepa-
ration process and the possibility of data leakage in their work1, 
we also found the physics basis of this idea problematic. We detail 
our concerns and analysis below, as well as in the Supplementary 
Information.

Several new machine learning and/or AI techniques have been 
introduced recently and used for a variety of purposes in solar phys-
ics and space weather forecasting2. Using direct images or extracted 
features from the photospheric magnetic field only, or combined 
with solar EUV observations, a number of efforts have been made 
to predict the occurrence and/or onset time of solar flares employ-
ing statistical and/or machine learning methods3–9. In addition, 
using algorithms including the support vector machines and con-
volutional neural networks, the mean absolute error in predicting 
the arrival time of corona mass ejections has—remarkably—been 
reduced to as low as ~6 h (refs. 10,11), providing further support for 
the use of machine learning/AI in space weather forecasting.

To study solar activity and predict space weather, Kim et al.1 
employed an AI technique (conditional generative adverserial net-
works) to predict solar photospheric magnetograms. They fed these 
conditional generative adversarial networks with full-disk EUV and 
photospheric magnetic field observations from the Atmospheric 
Imaging Assembly12 (AIA) 304 Å passband and Helioseismic and 
Magnetic Imager13 (HMI) onboard the Solar Dynamics Observatory 
(SDO). A model was then built with the SDO/AIA 304 Å images as 
the input to generate simultaneous SDO/HMI photospheric magne-
tograms. Kim et al.1 then evaluated the model and found promising 
correlation coeffecients between the total unsigned magnetic flux 
(TUMF) of the generated and observed magnetograms. Kim et al.1 
concluded that using their method the photospheric magnetograms 
could be reliably forecasted to greatly improve our current knowl-
edge of the farside active regions. However, there are several vital 

practical, as well as theoretical, issues in their study that to some 
extent mitigate the success of their model.

While preprocessing the SDO/HMI photospheric line-of-sight 
magnetograms (see the supplementary data and methods in ref. 1), 
Kim et al. set the upper and lower saturation limits of the magnetic 
field strength at ±100 G. However, these limits are problematic, 
especially for active regions, considering one of the main purposes 
of their study was to predict the farside active regions of the Sun. 
The average absolute magnetic field strength of all 3,936 active 
regions detected from the original observations in the testing set 
of the data has been found to be 208 ± 54 G. Only 0.77% of all the 
active regions reveal an average absolute magnetic field strength 
of less than 100 G, among which only three active regions have an 
average absolute magnetic field strength less of than 90 G.

The slopes of black dots in Supplementary Fig. 1a suggest that 
the rescaled magnetograms with saturation limits of ±100 G give 
on average 0.45 and 0.67 of the original TUMF and net magnetic 
flux (NMF). In addition, the degree of the scattering of the dots 
yields the R2 scores (Supplementary Equation (1)) of −0.07 and 
0.77, respectively. The percentage of instances where the rescaled 
magnetograms yield the opposite sign of the NMF to the original 
observations is about 19.4%. The above evaluation suggests, again, 
that the generated magnetograms could still be notably different 
from the original observations—even if the model were perfect—if 
saturation limits of ±100 G are used when preparing the dataset. For 
a comparison, blue dots and lines in Supplementary Fig. 1b show 
the corresponding results for saturation limits of ±625 G. We note 
that setting inappropriate large saturation limits might also be prob-
lematic as that could introduce too much noise, which might then 
severely impact the ability of the generative models to capture the 
prior distribution. Thus we encourage researchers to evaluate care-
fully before choosing the saturation limits for normalization pur-
poses. Moreover, Kim et al.1 used observations in September and 
October in each year as the testing set and the rest as the training 
set, risking a possibility of a data leakage, considering that the Sun 
rotates at a period of ~27.3 days (see ‘Potential data leakage’ in the 
Supplementary Information).

In addition to the above practical issues, we do not expect  
the model to be successful based on the theoretical fact that EUV 
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observations of the chromosphere and corona do not provide 
any information about the magnetic field polarities of the photo-
sphere. We trained the neural network to build an optimistic AI 
model using the code provided by Kim et al.1, fed with the same 
dataset preprocessed with the same parameter settings (see ‘Data 
and method’ in the Supplementary Information). Figure 1 shows 
a comparison of the observations (Fig. 1b) and the magnetograms 
generated by the model we built (Fig.1c, first run), which could 
be directly compared with the one generated from the model built 
by Kim et al. (fig. 1 in ref. 1). Overall, the AI models successfully 
identified the active regions presented in the original observation. 
However, the shapes of the active regions and the distributions of 
the positive and negative polarities are poorly reconstructed (see 
the two active regions enclosed in the green rectangle and blue 
square boxes in Fig. 1b,c). Furthermore, we ran the same procedure 
twice and built two new models (the best models built at 128 and 
212 epochs for the second and third runs, respectively). The mag-
netogram generated by one of these two models (the second run) 
is shown in Fig. 1d. Obvious differences can be seen between the 
generated active regions in Fig. 1c,d, which should not happen with 
a robust and reliable model. We note that although we have used 
the same architecture, hyperparameters and training data in all of 
our three models, they are different models and are not exactly the 
same as that in Kim et al.1. The differences arose because the mod-
els all have different trained parameters due to factors including 

different weight initialization, the stochastic character of the opti-
mizer and specificities of the loss hypersurface and so on. All fur-
ther analysis shown below and in the Supplementary Information 
is based on the first model that we built. Detailed evaluations of the 
correlation between the generated (from the first run) and rescaled 
(with saturation limits of ±100 G) magnetograms (see ‘Full-disk 
parameters’ in the Supplementary Information) show that the pro-
posed AI model is only successful in reproducing the TUMF of the 
global magnetic field, but fails to reconstruct the relative relations 
between the positive and negative polarities, as indicated by the low 
pixel-to-pixel cross-correlation and the low correlation between 
the NMFs. Integrating the TUMF information and area of the far-
side active regions into dedicated models, together with the front-
side magnetograms, could in some cases improve the performance 
in predicting the in situ solar wind speed14.

We employ an automated detection system15,16 to extract active 
regions and their parameters from the rescaled and the generated 
full-disk magnetograms. Supplementary Fig. 2 depicts a direct 
comparison between the active regions detected from the rescaled 
and generated magnetograms at 00:00 ut on 2011 September 28 
as an example. One can clearly observe differences between the 
sizes, shapes and polarity inversion lines of the active regions in the 
northern hemisphere, especially in the two big active regions (one 
close to the disk centre and the other on the right). There are also 
missed active regions in the northern hemisphere and one extra 
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Fig. 1 | Example of the observations and the AI-generated magnetograms. a, SDO/AIA 304 Å observation. b, SDO/HMI photospheric magnetogram. 
Images were taken at 12:00 ut on 2017 September 5. c,d, AI-generated magnetograms of the Sun by two of our independent verification processes from 
the first (c) and second (d) runs, respectively. Green and blue boxes in b, c and d enclose two active regions.

NAtURE AstRONOMY | VOL 5 | FEBRUARY 2021 | 108–110 | www.nature.com/natureastronomy 109

http://www.nature.com/natureastronomy


matters arising Nature astroNomy

active region in the southern hemisphere of the generated magneto-
gram compared with the rescaled one.

Statistical analysis (see ‘Active region parameters’ in the 
Supplementary Information and Supplementary Fig. 3) reveals 
that, on average, the model reproduces fewer than half of the active 
regions in each of the observations. The centres of the detected 
active regions in the AI-generated magnetograms are on average 
~1.3° away in heliographic coordinates from the real ones. Detailed 
evaluations on a number of key parameters of the detected active 
regions (see ‘Active region parameters’ in the Supplementary 
Information and Supplementary Fig. 4) suggest that the AI model 
performs fairly well in predicting the areas of the active regions, 
but poorly in reproducing the NMF of the active regions and the 
total number, length and average magnetic gradient across polarity 
inversion lines. To conclude, our sensitivity study suggests that the 
AI model proposed by Kim et al.1 may be far from providing scien-
tifically reliable magnetograms.

Data availability
SDO/AIA and SDO/HMI data are publicly available from NASA’s 
SDO website (https://sdo.gsfc.nasa.gov/data/). Details of the data-
set we used are available at https://github.com/yiminking/pix2pix_
EUV2HMI_datasets. Source data are provided with this paper.

Code availability
Codes for the AI models built in this paper are available at https://
github.com/tykimos/SolarMagGAN. Codes used for the detection 
of active regions are available upon request from the corresponding 
author.
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